Table of Contents Table of Contents
Previous Page  89 / 352 Next Page
Information
Show Menu
Previous Page 89 / 352 Next Page
Page Background

85

17. Rakin, M., Gubeljak, N., Dobrojević, M., Sedmak, A., “

Modelling of ductile fracture initiation

in strength mismatched welded joint”

. Engineering Fracture Mechanics, Vol. 75, (2008), pp.

3499-3510.

18. Dobrojević, M., Rakin, M., Gubeljak, N., Cvijović, I., Krunić, N., Sedmak, A., “

Micromecha-

nical analysis of constraint effect on fracture initiation in strength mismatched welded joints”

.

Materials Science Forum, Vol. 555, (2007), pp. 571-576.

19. Gao, X., Faleskog, J., Shih, C.F., Dodds, R.H., “

Ductile tearing in part-through cracks: experi-

ments and cell-model predictions”

. Engineering Fracture Mechanics, Vol. 59, (1998), pp. 761-

777.

20.

Dutta, B.K., Guin, S., Sahu, M.K., Samal, M.K., “

A phenomenological form of the q

2

parameter in the Gurson model”

. International Journal of Pressure Vessels and Piping, Vol.

85, (2008), pp. 199-210.

21.

Zhang, Z.L., Thaulow, C., Ødegård, J., “

A complete Gurson model approach for ductile

fracture”

. Engineering Fracture Mechanics, Vol. 67, (2000), pp. 155-168.

22.

Bernauer, G., Brocks, W., “

Numerical round robin on micro-mechanical models – Results”

.

ESIS TC8, GKSS Research Center, Geesthacht, (2000).

23. Sun, D.Z., Kienzler, R., Voss, B., Schmitt, W., “

Application of micro-mechanical models to the

prediction of ductile fracture”

. In: Fracture Mechanics, 22

nd

Symposium, Vol. II, ASTM STP

1131, (1992), pp. 368-378.

24. Steglich, D., Brocks, W., “

Micromechanical modeling of damage and fracture of ductile

metals”

. Fatigue and Fracture of Engineering Materials and Structures, Vol. 21, (1998), pp.

1175-1188.

25. Rakin, M., “

The analysis of ductile fracture initiation in structural steel using

micromechanical models”

. Ph.D Thesis (in Serbian), Faculty of Technology and Metallurgy,

Belgrade (2003)

26. Rakin, M., Sedmak, A., Zrilić, M., Putić, S., Sedmak, S., “

Analysis of crack growth initiation

and stable growth in low-alloyed pressure vessel steel”

(In Serbian). Procesna tehnika, Vol.

19, (2003), pp. 78-81.

27. Chu, C., Needleman, A., “

Void nucleation effects in biaxially stretched sheets”

. Journal of

Engineering Materials and Technology, Vol. 102, (1980), pp. 249-256.

28. Thomason, P.F., “

Ductile fracture of metals”

. Pergamon Press, Oxford, (1990).

29. Rakin, M, Sedmak, A., “

Micromechanical analysis in structural integrity assessment”

. In:

Monograph of the 9

th

International Fracture Mechanics Summer School (IFMASS 9), Faculty

of Mechanical Engineering, Society for Structural Integrity and Life, Faculty of Technology

and Metallurgy, GOŠA, Belgrade, (2008), pp. 85-104.

30. Tvergaard, V., Hutchinson, J.W., “

Two mechanisms of ductile fracture: void by void growth

versus multiple void interaction”

. International Journal of Solids and Structures, Vol. 39,

(2002), pp. 3581-3597.

31. Tvergaard, V., “

Discrete modelling of ductile crack growth by void growth to coalescence”

.

International Journal of Fracture, Vol. 148, (2007), pp. 1-12.

32. Kim, J., Gao, X., Srivatsan, T.S., “

Modelling of crack growth in ductile solids: a three-dimen-

sional analysis”

. International Journal of Solids and Structures, Vol. 40, (2003), pp. 7357-

7374.

33. Gubeljak, N., Scheider, I., Koçak, M., Oblak, M., Predan, J., “

Constraint effect on fracture

behaviour on strength mis-matched weld joint”

. In: Proceedings of the 14

th

European

Conference on Fracture (ECF 14), Vol I, Krakow, (2002), pp. 647-655.

34. Underwood, E.E., “

Quantitative Metallography”

. In: ASM Metals Handbook, Vol. 9, ASM

International, (1986), pp. 123-134.

35.

GKSS:

Displacement gauge system for applications in fracture mechanics”

. Patent

Publication, GKSS Research Center, Geesthacht, (1991).