84
ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support from the Serbian Ministry of
Science under the project OI 144027 and Slo-Serb. bilateral project "Failure prevention of
inhomogeneous materials and structures" (together with Slovenian Ministry of Science).
The lecturers would also like to thank N. Gubeljak for the results of the tensile and
fracture mechanics tests, Z.L. Zhang for the CGM user subroutine, M. Dobrojević for
useful suggestions and I. Cvijović - Alagić for help in microstructural analysis.
REFERENCES
1.
Pineau, A., “
Modelling ductile to brittle fracture transition in steels - micromechanical and
physical challenges”
. International Journal of Fracture, Vol. 150, (2008), pp. 129-156.
2.
Rice, J.R., Tracey, D.M., “
On the ductile enlargement of voids in triaxial stress fields”
. Journal
of the Mechanics and Physics of Solids, Vol. 17, (1969), pp. 201-217.
3.
Beremin, F.M., “
Experimental and numerical study of the different stages in ductile rupture:
application to crack initiation and stable crack growth”
. In: Three-dimensional Constitutive
Relations and Ductile Fracture, North-Holland Publications, Amsterdam , (1981), pp. 185-205.
4.
Huang, Y., “
Accurate dilatation rates for spherical voids in triaxial stress fields”
. Transactions
ASME: Journal of Applied Mechanics, Vol. 58, (1991), pp. 1084-1086.
5.
Chaouadi, C., de Meester, P., Vandermeulen W., “
Damage work as ductile fracture criterion”
.
International Journal of Fracture, Vol. 66, (1994), pp. 155-164.
6.
Chaouadi, R., De, Meester P., Scibetta, M., “
Micromechanically modeling of ductile fracture
toughness of reactor pressure vessel steels”
. In: Proceedings of the 1
st
European Mechanics of
Materials Conference on Local Approach to Fracture, EUROMECH-MECAMAT'96,
Fontainebleau (1996) pp. 126-138
7.
Mudry, F., Di Fant, M., “
A round robin on the measurement of local criteria”
. Irsid, St.
German, (1993).
8.
Zrilić, M., Rakin, М., Milović Lj., Burzić Z., Grabulov V., “
Experimental and numerical
evaluation of steamline behaviour using local approach”
. Metallurgy, Vol. 46, (2007), pp. 87-
92.
9.
Zrilić, M., Rakin, M., Sedmak, A., Aleksić, R., Cvijović, Z., Arsić, M., “
Ductile fracture
prediction of steam pipeline steel”
. Materials Science Forum, Vol. 518, (2006), pp. 537-542.
10. McClintock, F.A., “
Ductile rupture by the growth of holes”
. Journal of Applied Mechanics,
Vol. 35, (1968), pp. 363-371.
11. Gurson, A., “
Continuum theory of ductile rupture by void nucleation and growth: Part I - yield
criteria and flow rules for porous ductile media”
. Journal of Engineering Materials and
Technology, Vol. 99, (1977), pp. 2-15.
12. Thomason, P.F., “
Three-dimensional models for the plastic limit-loads at incipient failure of
the intervoid matrix in ductile porous solids”
. Acta Metallurgica, Vol. 33 (1985) pp. 1079-
1085
13. Tvergaard, V., “
Influence of voids on shear band instabilities under plane strain conditions”
.
International Journal of Fracture, Vol. 17, (1981), pp. 389-407.
14. Tvergaard, V., Needleman, A., “
Analysis of the cup-cone fracture in a round tensile bar”
, Acta
Metallurgica, Vol. 32, (1984), pp. 157-169.
15. Rakin, M., Cvijović, Z., Grabulov, V., Putić, S., Sedmak, A., “
Prediction of ductile fracture
initiation using micromechanical analysis”
. Engineering Fracture Mechanics, Vol. 71, (2004),
pp. 813-827.
16. Rakin, M., Cvijović, Z., Sedmak, A., Sedmak, S., “
Analysis of the transferability of micro-
mechanical parameters of damage of steel under the conditions of ductile-fracture initiation”
.
Materials Science, Vol. 38, (2002), pp. 104-113.