Table of Contents Table of Contents
Previous Page  71 / 352 Next Page
Information
Show Menu
Previous Page 71 / 352 Next Page
Page Background

67

Figure A2: In-plane grid measurements.

Lagrangian total strain tensor:

2FൌF

F‐1ൌቐ

ܧ

ଵଵ

ܧ

ଵଶ

ܧ

ଵଷ

ܧ

ଶଶ

ܧ

ଶଷ

ݕݏ

݉

ܧ

ଷଷ

(A.3)

Eulerian total strain tensor:

2eൌ1‐F

ି்

F

ିଵ

ൌ F

ି்

EF

ିଵ

(A.4)

Lagrangian plastic strain tensor:

E

ൌ ሾ1 െ 2

ߙ

ሺΘ െ Θ

ሻሿE ‐ αሺΘ െ Θ

ሻ1 ‐ F

ି்

E

F

(A.5)

Eulerian plastic strain tensor (under the assumption

F

ൌ R

U

, R

ൌ 1

):

e

ൌ ሾΘ െ Θ

ሿe െ

ߙ

ሺΘ െ Θ

ሻ1 ൅ E

e ൅ eE

െ E

(A.6)

Hill's logarithmic plastic strain tensor:

ߝ

ଵ ଶ

lnሺF

F

௉்

(A.7)

Cauchy (true) stress tensor and its deviator:

Tൌ ൝

ߪ

0 0

0

ߪ

0

0 0 0 ൡ ,

ߪ

ܨ

ܣ

ߪ ,

ܨ

ܣ

A.8

T'ൌ

ଵ ଷ

൝ 2

ߪ

ߪ

0

0

0 2

ߪ

ߪ

0

0

0 െ

ߪ

ߪ

(A.9)

Mises equivalent true stress (compare (A9)):

ߪ

௘௤

ൌ ඨ 3 2 ඥ

ܚܜ

ሼT'

ሽ ൌ ට

ߪ

ଵ ଶ

ߪ

ଶଶ

ߪ

ߪ

(

A10

)

Second Piole-Kirchhoff stress tensor

S ൎ T െ E

T െ TE

(A11)

Hooke's law:

E

ଵ ா

ሾሺ1 ൅

ߥ

ሻS െ

ߥ

1

ݎݐ

Sሿ

(A.12)

ܧ

E

ൌ ሺ1 ൅

ߥ

ሻሺT െ E

െ TE

ሻ െ

ߥ

1

ݎݐ

ሺT െ E

T െ TE

(A.13)

should be solved iteratively to find

E

e

from

T

: Nominal (engineering) stress tensor:

T

௘௡௚

ൌ ሺdetFሻTF

ି்

(A.14)

Mises equivalent engineering stress (from (A.14):