67
Figure A2: In-plane grid measurements.
Lagrangian total strain tensor:
2FൌF
்
F‐1ൌቐ
ܧ
ଵଵ
ܧ
ଵଶ
ܧ
ଵଷ
ܧ
ଶଶ
ܧ
ଶଷ
ݕݏ
݉
ܧ
ଷଷ
ቑ
(A.3)
Eulerian total strain tensor:
2eൌ1‐F
ି்
F
ିଵ
ൌ F
ି்
EF
ିଵ
(A.4)
Lagrangian plastic strain tensor:
E
ൌ ሾ1 െ 2
ߙ
ሺΘ െ Θ
ሻሿE ‐ αሺΘ െ Θ
ሻ1 ‐ F
ି்
E
F
(A.5)
Eulerian plastic strain tensor (under the assumption
F
ൌ R
U
, R
ൌ 1
):
e
ൌ ሾΘ െ Θ
ሿe െ
ߙ
ሺΘ െ Θ
ሻ1 E
e eE
െ E
(A.6)
Hill's logarithmic plastic strain tensor:
ߝ
ൌ
ଵ ଶ
lnሺF
F
்
ሻ
(A.7)
Cauchy (true) stress tensor and its deviator:
Tൌ ൝
ߪ
ଵ
0 0
0
ߪ
ଶ
0
0 0 0 ൡ ,
ߪ
ଵ
ൌ
ܨ
ଵ
ܣ
ଵ
ߪ ,
ଶ
ൌ
ܨ
ଶ
ܣ
ଶ
ሺ
A.8
ሻ
T'ൌ
ଵ ଷ
൝ 2
ߪ
ଵ
െ
ߪ
ଶ
0
0
0 2
ߪ
ଶ
െ
ߪ
ଵ
0
0
0 െ
ߪ
ଵ
െ
ߪ
ଶ
ൡ
(A.9)
Mises equivalent true stress (compare (A9)):
ߪ
ൌ ඨ 3 2 ඥ
ܚܜ
ሼT'
ଶ
ሽ ൌ ට
ߪ
ଵ ଶ
ߪ
ଶଶ
െ
ߪ
ଵ
ߪ
ଶ
(
A10
)
Second Piole-Kirchhoff stress tensor
S ൎ T െ E
T െ TE
(A11)
Hooke's law:
E
ൌ
ଵ ா
ሾሺ1
ߥ
ሻS െ
ߥ
1
ݎݐ
Sሿ
(A.12)
ܧ
E
ൌ ሺ1
ߥ
ሻሺT െ E
െ TE
ሻ െ
ߥ
1
ݎݐ
ሺT െ E
T െ TE
ሻ
(A.13)
should be solved iteratively to find
E
e
from
T
: Nominal (engineering) stress tensor:
T
ൌ ሺdetFሻTF
ି்
(A.14)
Mises equivalent engineering stress (from (A.14):