Hydrogen embrittlement causes problems that probably will become apparent to an increasing extent as hydrogen is taken into general use for energy storage and as a fuel for heating and electricity production. According to Wikipedia, the phenomenon has been known since at least 1875. The subject of this blog 

“The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion”, by Milos B. Djukic, Gordana M. Bakic, Vera Sijacki Zeravcic, Aleksandar Sedmak, and Bratislav Rajicic Engineering Fracture Mechanics 216 (2019) 106528, pp. 1-33

is an in-depth and comprehensive review article that deservedly is frequently cited. It deals with the progress made over the past 50 years. For those who want to get into the subject, the paper is an excellent starting point with 243 references and nice descriptions of known mechanisms and methods used for risk assessments. The paper is not open access yet but will be that within a couple of days with courtesy from EFM.

The presumable outdated observations by William Johnson from 1875 are not mentioned in the review article. I assume that not much happened before the second half of the 20th century. Johnson’s findings were published in “Proceedings of the Royal Society of London” on New Year’s Eve 1875. He conducted measurements of the strength of conventional tensile test specimens. The strength, after bathing the sample in an acid, dropped by up to 20%. As the classically trained experimental physicist Johnson was, he did not stop at strength but also measured the effect of hydrogen on electrical conductivity and on the diffusion rate of the hydrogen. In the latter case, the distribution of hydrogen in the test rod revealed itself as bubbles forming on the fracture surfaces of the test rod. During the test, the rod was dipped to different depths in the acid bath. When the fracture occurred in a part below the surface of the acid bath, the entire cross-section was covered with bubbles from leaking hydrogen and when the fracture occurred at a distance equal to the specimen radius above the bath, only the two thirds closest to the centre of the fracture surface were covered with hydrogen bubbles. The observation gives a wonderful picture of how the diffusion of hydrogen deviates towards the free outer surfaces. Brilliant results with the simple scarce experimental resources of the time.

I traditionally have an inquiry for the authors or any reader regarding something that puzzles me. This time it strikes me that in the review article nothing is mentioned about other affected material properties. I know that the review article focuses on the embrittlement of steel. However, since it is rightly regretted that too little is known to facilitate a formulation of a theory that can provide reliable models for prediction, perhaps observations of other things such as diffusion rates and electrical conductivity may provide more light to the underlying physics. Any suggestions?

All comments, opinions, thoughts regarding the paper, or anything related are encouraged. If you belong to the unfortunate that do not have an iMechanica account, please email me at per.stahle@solid.lth.se and I will see what can be done.

Per Ståhle 

https://imechanica.org/node/26076